

iMAPS New England 43rd Symposium & Expo

Investigation of Electromagnetic Field Coupling from DC-DC Buck Converters to Automobile AM/FM Antennas

Patrick DeRoy, CST of America, Framingham, Massachusetts, USA Andreas Barchanski, CST AG, Darmstadt, Germany Cyrous Rostamzadeh, Bosch, Plymouth, Michigan, USA Behrouz Abdolali, Crouse, Tehran, Iran

Outline

Introduction and Motivation - SMPS EMI

CISPR25 RE Test and Nearfield Probe Measurements

Buck Converter Operation and RF Current Paths

• Time Domain Waveforms, Parasitic Inductances and Loop Inductance Calculations

AM Band Noise and Mitigation

• Effect of Shielding, Electric and Magnetic Shields

Glass Antennas and Vehicle Level Measurements

• Near field coupling interaction

Computational Modeling and Analysis

Summary and Q&A

Modern Automobile = Complex Electromagnetic Environment

Switched Mode Power Supply EMI

Power Electronics designers require a deep breadth of knowledge - circuit design, magnetics, semiconductor devices, thermal management, control theory, PCB layout, EMI...

EMI continues to be a major problem! Especially for Switched Mode Power Supply (SMPS) devices

Concepts well known, yet it can still be difficult to pass EMC regulations - and it's only getting more difficult

CISPR25 Radiated Emissions Test

DUT: DC-DC Buck Converter, Eval Board

Measured Results - 150kHz - 30 MHz

Nearfield Probe Measurement at 1 MHz

Electric Field Measurements, f = 1.018 MHz (Ez at 1cm above PCB)

DC-DC Buck Converter Block Diagram

Switching Frequency ~ 500 kHz PWM DC/DC L1 CBOOT 3.3 Vout Buck SMPS 12 Vin VIN D1 SW SHDN **★**C_{OUT} **** GND FB (a)

L1 Energy Storage Inductor (Magnetically Shielded) = D1 Free-Wheel or Catch Diode (Switch) SW Switch Node (CAUTION High dV/dt)

Inductor Current vs. Time

CST - COMPUTER SIMULATION TECHNOLOGY | www.cst.com

Switch Node Voltage Overshoot

Zoomed: 4ns Ringing

RF Current Paths

FET Switch ON, Schottky Diode OFF

FET Switch OFF, Schottky Diode ON

RF Current Circulation Causes 4ns Ringing

CST MWS - 3D PCB Model

L_{loop} calculated to be 3.15 nH.

$$f_{res} = \frac{1}{2\pi\sqrt{\sum L_{loop}}C} = \frac{1}{2\pi\sqrt{3.15nH \times 125pF}} = 253.65MHz$$

CST MWS - 3D PCB Model

L_{loop} calculated to be 3.15 nH.

$$f_{res} = \frac{1}{2\pi\sqrt{\sum L_{loop}}C} = \frac{1}{2\pi\sqrt{3.15nH \times 125pF}} = 253.65MHz$$

L_{loop} calculated to be 3.15 nH.

$$f_{res} = \frac{1}{2\pi \sqrt{\sum L_{loop}}C} = \frac{1}{2\pi \sqrt{3.15nH \times 125pF}} = 253.65MHz$$

H-Field Measurement at 2 cm above the loop area (254 MHz Resonance)

AM Band Noise and Mitigation

Inductor L1 is Magnetically Shielded, Encapsulated in Ferrite as seen here

150 kHz - 30 MHz, Unshielded Inductor L1, (Resolution Bandwidth 9 kHz, Average Detector)

Copper Shield over L1 and SW Node

150 kHz - 30 MHz, Shielded Inductor L1, (Resolution Bandwidth 9 kHz, Average Detector)

150 kHz - 30 MHz, <u>Unshielded Inductor</u> L1 vs. <u>Shielded Inductor</u> L1 Comparison (Resolution Bandwidth 9 kHz, Average Detector)

Vehicle Level AM Band RE Measurement

Antenna Cable is removed from Radio and connected to EMI Receiver via an Impedance Matching Network in large semi-anechoic chamber).

DC-DC Buck Converter with 10 Ω load is powered from vehicle Battery Supply (accessible from cigarette lighter outlet). It was placed ~ 1 meter away from rear glass antenna

Reduction in Emission due to Shield

Near Field Coupling Interaction

"Electric Dipole – E-Field Antenna"

Near Field Coupling Interaction

<u>"Magnetic Dipole – Loop Antenna"</u>

Audio Recording in Nissan Altima

Courtesy of Cyrous Rostamzadeh, Bosch

Buck Converter OFF

Buck Converter ON

AM 1000 kHz January 6, 2016 Plymouth, Michigan

Modeling for Further Investigation

Instrumental to answer "what-if" scenarios?

Exploit optimum SW Node "high dv/dt" trace area (parameterize geometry).

Extract parasitic inductances from PCB geometry.

Explore Shielding requirements "Shielding Effectiveness" for Compliance.

PCB Prototype vs. Model

Inductor Coil Design

The coil was designed so that it matches the specifications. Inductance is 15 uH.

Inductor Model, Magnetic Shield

We have placed a Mue=1000 material box around the inductor. This does clearly reduce the H field above the inductor (30dB), little effect on E Field (0.2dB).

Adding a long shield above the inductor and the switch node does reduce the E and H field 1 cm above the PCB

Adding a long shield above the inductor and the switch node does reduce the E and H field 1 cm above the PCB

Adding a long shield above the inductor and the switch node does reduce the E and H field 1 cm above the PCB

Adding a long shield above the inductor and the switch node does reduce the E and H field 1 cm above the PCB

H-Field, 1 MHz, Side View

Unshielded

H-Field, 1 MHz, Side View

Magnetically Shielded

Unshielded, Ez 1cm above PCB

Unshielded, Ez 1cm above PCB

E-field, 1 MHz, Side View

No Shielding

Magnetic Shield over Inductor

Electric Shield over Inductor only

Electric Shield over Inductor + SW Node

	V/m
	250 📥 📩
	227
	205
	205 -
	182
	159 -
	136
	90.9
	68.2
	45 5
	10.0
	22.7 -
	0
e-field (f=1) [Tran1] (peak)	0.
Cutplane Name: Cross Section A	A T
Cubbine Position - 2	
Component: Abs	
Orientation: Outside	
2D Maximum [V/m]: 24.23e+03	
Prequency: 1	
Phase: U	

Near Field Coupling

Noise coupling phenomena below 30 MHz (deep in Near-Field Zone) with vehicle antenna is via E and H fields. E and H fields coexist at all times regardless of noise source impedance as seen here.

H-Field Shielded Inductor + using low inductance capacitor and practicing best EMI guidelines, i.e., reduction of mounting inductance is NOT sufficient. L1 and SW node trace <u>MUST be shielded using a conductive material (i.e., copper) and</u> <u>bonded to PCB Ground</u>.

Summary

SMPS EMI is a real problem, especially for automotive (ever more complex electromagnetic environment)

Time domain measurements revealed higher frequency noise, near field probes revealed AM Band noise - two different effects (E and H fields)

Must take care with PCB layout and high dV/dt of Switch Node

Shielding of inductor and large switch node trace proven to reduce emissions

Validation and verification of experimental findings with CEM simulation software